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Abstract 
Since the set of self-similar asymptotics in addition to Lifshitz-Slyozov’s [2] 

and Wagner’s [4] ones were found computationally and analytically [6] in the 
theory of Ostwald ripening, the problem of time corrections to these asymptotics 
raised and to this day it wasn’t resolved properly and completely, as most of the 
discussions are around the definition of asymptotics themselves only out of 
classic Ostwald ripening model [3],[8],[9]. 

Considering the perturbation theory for the complete system of equations for 
the classic diffusion-controlled Ostwald ripening, we got first-order power 
corrections to the concentration of metastable phase, to the critical radius of 
drops, to their concentration, and we found explicit form of self-similar 
correcting distribution functions that have power decay to their asymptotics. 
Their normalization and scaling, which depends on experimental parameters, 
were obtained computationally. Limiting Lifshitz-Slyozov’s case was 
represented individually and it got formal similarities with the work of 
Marqusee and Ross [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



Introduction 
     Ostwald ripening (OR), first described by Wilhelm Ostwald in 1896 [1], is 
the process of competitive growth of new-phase clusters, when for the 
molecules energetically favorable to leave the small droplets, causing their 
dissolving, and to be transferred to the bigger ones (total surface energy reduces 
in such a way). This phenomenon play important role in stability of dispersion 
systems, precipitation hardening of alloys, formation of surface structures, and 
synthesis of nanoparticles. First significant mathematical analysis of OR was 
given by Lifshits and Slyozov (LS) in 1958 [2] for the case when diffusion 
transfer in mean field of metastable phase concentration plays main role in OR 
(non-mean field theory accounts intersections between diffusive fields around 
drops with finite volume fraction in the system [3]). By default assumption of 
infinite spectrum of cluster sizes (i.e. no maximal drop exists) LS obtained self-
similar asymptotic of distribution function (DF) clusters on sizes. In 1961 
Wagner did the same derivation for the case of interface-kinetics dominance [4], 
i.e. the ability of a drop to catch or to emit a molecule. The latter case, as 
distinct from the first one, corresponds to the system, where the free path of a 
molecule is well over cluster size (for certain estimates see [5]). 

In the later 1990s the set of self-similar asymptotics (LS and Wagner’s ones 
are the limiting cases for them) were found [6] without mentioned LS 
assumption. Certain asymptotic depends on the character of initial DF in the 
vicinity of the maximal drop [7], as it obviously affects critically on the 
behavior of OR, which finally forgets original distribution of small drops. Since 
then, there were many attempts to determine pre-eminence of LS asymptotic DF 
with its exponential tail among others asymptotics with power-like tails by 
means out of classic LS model by taking into account coagulation effect [8], or 
fluctuations [9], i.e. second order Becker-Döring-Zeldovich equation on DF in 
the theory of nucleation instead of first order continuity equation. These works 
can meet criticism only in that, how sensitive can be fluctuations for big enough 
drops to consider continuous variables and DFs. It also can be perverse to seek 
determination of initial DF (note: its mean value over systems) by fluctuations 
in a certain system while fluctuations shake DF with Poisson distribution in 
ensemble of systems [10].  

The aim of this work is to build the perturbation theory by the example of 
diffusion-controlled OR and to find explicit first-order time corrections to any 
possible asymptotic of classic theory. 
 

1. Basic formulas in the theory of OR 
Let us introduce following non-dimensional variables: 
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Here τ  is the time in the ratio to the chosen moment 1t  at which we know in 

line with (1.2) vapor concentration ( )N t  that we write in relation to N
∞

 – 
asymptotical equilibrium vapor concentration above flat boundary of liquid 
phase. D  is the diffusive constant, vl  is the molecular volume in liquid phase, 
σ  is the surface tension coefficient, kT  – Boltzmann constant multiplied on 
temperature (by the way we neglect thermal effects of condensation). Finally, 

( )a τ  is the radius of a globular drop in respect to critical radius at mentioned 
moment. Critical radius depends on supersaturation and it is expressed by the 
asymptotical formula: 
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If a drop has size less than current critical magnitude, it diminishes until 
dissolution, what can be seen from the growth equation for a drop during 
diffusive OR: 
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This is the only equation in which diffusive and interface-kinetics ORs differ, 
and 1t  was obtained from non-dimensionalizing (1.4). Derivation of these 
equations one can see in [5]. Next two expressions are written for DF  ( , )F a τ : 
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We regard the continuity equation as we suppose non-fluctuating smooth 
change in time of DF. This equation on DF is non-linear as it depends through 
(1.4) and (1.3) on vapor concentration, which we constrain with permanent total 
mass of liquid and vapor in isolated system by balance equation: 
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DF is normalized proportionally to the concentration of drops: 
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Factual integration limits extend from relatively minimal drop to the maximal 
one at the current time. Expressions (1.3) – (1.6) represent the complete system 
of equations of OR, that can be resolved for all included variables, their 
asymptotics and corrections, at least computationally. 
 

 
 



2. The set of self-similar asymptotics 

LS get their solution for (1.5) in the terms of variable ( ) ( ) / ( )cu a aτ τ τ= . We 

will use more convenient variable ( ) ( ) / ( ) (0,1]mv a aτ τ τ= ∈  in the ratio to the 

maximal radius ( )ma τ  among all drops. By analogy with LS, with the new 
variable we also introduce new DF, but with its explicit dependence on time: 

( ) 4, ( ) ( ( ), )m mP v a F vaτ τ τ τ≡                                  (2.1) 
With such DF balance equation (1.6) preserves nearly the same form: 
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Anzats (2.1) will lead us on substituting (1.4) to (1.5) to the following equation: 
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Where the next expressions define the key variable ( )γ τ  and give useful 
relation on it which results from (1.4) for the growth of the maximal drop with 
the radius ( )ma τ : 
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Normalization (1.7) of the rescaled DF and its finite asymptotic (limited by the 
balance equation) take the form: 
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It is evidently from the second relation in (2.4) that self-similarity requires 
constant γ , and the self-similar asymptotic solution can be written in the form: 
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Without time dependence eq. (2.3) becomes separable and it can be simply 
integrated by fractions. Result is: 
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Parameter α  is needed for further corrections. DF must be physically limited in 
1v = , hence 0 0µ ≥ , and the set of self-similar asymptotics is defined in the 

certain interval of 0 (2, 5]γ ∈ . Accurate passage to the limit 0 2γ → +  in (2.7) 

(at that ( ) ( )1

0 0 1 01 3 2vλ µ γ−
− −    and 0 0 11 / 3λ µ− → − ) will give us 

due to exponent in ( ) ( )[ ] 0

0
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3. The perturbation theory 

To build the equation on the first-order corrections we need to exclude from the 
eq. (2.3) the asymptotics for ( , )P v τ , ( )γ τ , and ( )ma τ . For latter the long-time 
behavior can be simply derived by integrating from the definition of γ  in (2.4):  

3
2

0

( ) ( )1
( )

3
m m

m

da da
a

d dτ

τ τ
τ

γ τ τ→∞
=  

So, all necessary asymptotics with corrections look like: 
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Correction to DF obviously should be normalized to zero. Also it can be shown 
from (2.5) and (3.3) that normalization can be replaced by its asymptotic value 
in first-order accuracy, which can be found with the help of balance equation 
(2.2) in main (asymptotic) order upon substituting (3.1) and (3.4) to it: 
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In next order balance equation connects corrections to ( )n τ  and DF: 
1

3

0

0

( | ) ( , | )n K v P v dvδ τ γ δ τ γ= − ∫                             (3.6) 

Connection of corrections to ( )ma τ  and ( )γ τ  is derived from definition (2.4): 
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Substituting (3.3) and (3.2) with (3.7) in the second relation in (2.4) we will get 
expression for critical radius with its correction: 
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Its asymptotic is enough to get correction to vapor concentration from (1.3): 
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From (3.9) and (3.6) one can see that 1/3( , | ) ( )P v nδ τ γ δ τ τ −
   in main order 

for isolated system. But for open system with arbitrary rate of additional mass 
transfer when ( )z z τ=  in (2.2) such conclusion can’t be made relying only on 
balance equation. General power law behavior for correction to asymptotical 
self-similar DF (if it exists in certain open system) is derived from equation on 
DF itself. Substituting (3.2), (3.3), (3.4) to (2.3), excluding asymptotical terms 
and eliminating high-order corrections we will get: 
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It can be clearly seen that any power-time behavior (as well as power series) of 
both ( , )P vδ τ  and ( )δγ τ  cancels time dependencies leading to self-similarity: 
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This general power law can be proven strongly relative to ( , )P vδ τ  in the terms 
of eigenvalues and eigenfunctions for differential operator in the right side of 
the eq. (3.10) and the logarithmic time lnτ , that converts the equation in 
nonhomogeneous differential (by times) equation. The same power law for 

( )δγ τ  obviously follows from time independence of 1 ( )P v , on which we now 
have nonhomogeneous differential (by sizes) equation instead of (3.10): 
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Where 0( | )Q v γ  was obtained from (3.10) by expressing 0 0( | )dP v dvγ  via 

0 0( | )P v γ  immediately from the differential equation (2.3) for asymptotic DF. 
Solution of the homogeneous part of the eq. (3.12) can be directly integrated by 
fractions alike (2.3) with the solution like (2.7) with the same designations but 
with arbitrary normalization: 
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Full solution of (3.12) can be expressed with 1 ( )HP v  by resolvent formula with 
the constant of integration fulfilling normalization of the DF to zero as in (3.4): 
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Second term in brackets represents mentioned constant and it can be found 
computationally.  Corrective DF corresponds to asymptotic DF by certain 0γ . 

We know power 1 / 3α =  from balance equation on corrections (3.6). Scale 1γ  

also results from there upon substituting (3.9) and 1/3
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With normalization 0K  from (3.5) one can find 1 0 1( , , )n zγ γ  numerically if 

experimental data 0γ , 1n  and z  are specified. Finally, placing 1/3

1( )δγ τ γ τ −=  
to (3.7) and solving differential equation we can get first-order correction to 
maximal radius and therewith to the critical one from (3.8): 

1/3

1/31

0 0

3
( ) 1

2ma
γ

τ τ τ
γ γ

−= −
   
   
   

                          (3.16) 

( )

1/3

1/30 0
1

0 0 0 0

13
( ) 1

1 2 1ca
γ γ

τ τ γ τ
γ γ γ γ

−−
= −

+ +

  
  

   
             (3.17) 

It is the concentration of drops is usually measured on experiment, and from 
(2.5), (3.5) and (3.16) we have in main and first orders: 
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The same time power without factor in first order was obtained in [11]. 
 
 
 



4. Lifshits-Slyozov case 

LS case corresponds to 0 2γ =  in all previous expressions except those for DFs 

with the limit passage 0 2γ → + . To make correction to ( )

0 ( )LSP v  from (2.8) we 

must execute limit in (3.13), that has the same exponential form as ( )

0 ( )LSP v : 
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Therewith ( )

1 ( )LSP v  takes the form (3.14) with ( )

0 0( ) ( )LSP v P v→  and 
( )

1 1( ) ( )H H LSP v P v→  that resembles correction DF obtained by Marqusee and 
Ross in [11], but such correction was rightly criticized by Kukushkin and 
Osipov (KO) in [12] because of non-uniform convergence at 1v = . Indeed, in 
the vicinity of maximal drop 0
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So KO infer that LS solution can’t be asymptotical at all and in [12] they 
proposed special treatment of OR equations with another than γ  key parameter 
that leads to another asymptotical DF with exponential tail. But it is confusing 
that KO DF causes inequality between critical size and average radius of drops, 
while this nonrandom asymptotical equality can be established apart from 
equation on DF [5] and can be obtained computationally even much earlier 
asymptotical stage [13]. 
     On the back of this we should notice that LS derived their asymptotic and 

logarithmic time correction to their ( ) 12 ( ) ( ) /c ca da dγ τ τ τ
−

≡   only from the 
growth equation (1.4), which in our variables and designations takes the form: 
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LS considered infinite spectrum of drops sizes (i.e. no maximal drop exists and 
1v =  LS called “locking point” ) and they argued that some drops occurred in 

the interval 1(1, ]v v∈  will infinitely grow in view of positive sign of right side 
(4.2) thereby violating balance equation. So they chose specific asymptotic for 
gamma at which two roots (1 and 1v ) of polynomial 0( | )G v γ  degenerate into 
one. The same logic LS iterated for correction to gamma. If we repeat their 
consideration of (4.2) in the vicinity of maximal drop for corrections to our 
gamma ignoring eq. (3.10) we also will obtain logarithmic law instead of 
powerlike 1/3

1 0 1( ) 2 ( 2, , )n zγ τ γ γ τ −= + = : 



( ) 2 3 / lnγ τ τ= −                                          (3.21) 
Which one behavior of gamma we should accept? At least it is doubtful that 
time correction (4.3) can be independent from non-self-similar DF (as nonlinear 
value can’t evolve apart from DF) with its scale determined by the size of a 
system, while our consideration accounts DF with its normalization and balance 
equation in explicit form, but our treatment indeed isn’t uniformly applicable for 
LS case, as it was stressed above. 
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